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Enhanced sedimentation in settling tanks with inclined walls 
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Using the principles of continuum mechanics, a theory is developed for describing 
quantitatively the sedimentation of small particles in vessels having walls that  are 
inclined to the vertical. The theory assumes that the flow is laminar and that the 
particle Reynolds number is small, but c,,, the concentration in the suspension, and the 
vessel geometry are left arbitrary. The settling rate S is shown to depend upon two 
dimensionless groups, in addition to the vessel geometry: a sedimentation Reynolds 
number R, typically O(1)-O( 10); and A, the ratio of a sedimentation Grashof number 
to R, which is typically very large. By means of an asymptotic analysis it is then 
concluded that, as A -+ co and for a given geometry, S can be predicted from the well- 
known Ponder-Nakamura-Kuroda formula which was obtained using only kinematic 
arguments. The present theory also gives an expression for the thickness of the clear- 
fluid slit that forms underneath the downward-facing segment of the vessel walls, as 
well as for the velocity profile both in this slit and in the adjoining suspension. 

The sedimentation rate and thickness of the clear-fluid slit were also measured in a 
vessel consisting of two parallel plates under the following set of conditions: c,, < 0.1, 
R N O ( l ) ,  0(10)5 < A < O(lO') and 0" < a < 50°, where a is the angle of inclination. 
Excellent agreement was obtained with the theoretical predictions. This suggests that 
the deviations fIom the Ponder-Nakamura-Kuroda formula reported in the literature 
are probably due to a flow instability which causes the particles to resuspend and 
thereby reduces bhe efficiency of the process. 

1. Introduction 
The removal of solid particles from liquid streams constitutes an important step 

in a large variety of industrial processes. The simplest and most common method of 
achieving this is by means of gravity settling which, however, often requires large 
tanks especially when the particles in the suspension are small. Thus, a need exists for 
designing settling devices which have retention times on the order of minutes rather 
than hours. 

One potentially very promising class of devices is based on the application of the 
'Boycott effect ', a curious phenomenon of settling convection in inclined vessels first 
reported by Boycott (1920). The essence of Boycott's observation was that ' .  . . if 
oxalated or defibrinated blood is put to stand in narrow tubes, the corpuscles sediment 
a good deal faster if the tube is inclined than when it is vertical '. Subsequently, many 
investigators studied the phenomenon for a variety of suspensions and reported that 
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FIGURE 1. The different regions in the flow field: A ,  interface between the particle-free fluid and 
the suspension; B, suspension; C, particle-free fluid layer; D, concentrated sediment layer on 
upward-facing surface. 

a several-fold increase in the sedimentation rate could thereby be achieved. An 
excellent summary of the earlier papers on the subject is given by Hill (1974). 

A qualitative explanation of the ‘ Boycott effect ’ can be obtained by assuming that, 
even when the walls of the container are inclined, the particles merely settle vertically 
until they reach the upward-facing surface. Then, whereas in settling between vertical 
parallel plates a particle must travel a distance of O ( H )  (cf. figure 1)  to be removed, 
this distance is only O(b)  when the plates are inclined. Thus, assuming that the particles 
can flow down the upward-facing inclined plate and be collected at the bottom, one 
is led to the conclusion that the enhancement to the settling rate should be O ( H / b ) .  
Surprisingly, this prediction is correct under some circumstances even though, as we 
shall see below, the process of sedimentation in inclined vessels is significantly more 
complicated than simple vertical settling. 

To begin we note that, if the particles just settled vertically, particle-free fluid 
would appear above the suspension both at  the top of the vessel and directly under the 
downward-facing surface, and that every point on the interface separating the clear 
fluid region from the suspension would fall vertically with velocity q,, the particle 
settling velocity of the same suspension as measured in a container with vertical walls. 
Experimental observations of the inclined settling process show, however, a markedly 
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different behaviour. First of all, although a clear-fluid layer does form under the 
downward-facing plate (cf. figure l),  its thickness remains small and is essentially 
independent of time. Also, although a sharp, effectively horizontal interface between 
the suspension and the clear fluid does exist on top (as in vertical settling), this inter- 
face falls with an enhanced vertical velocity that is typically several times greater 
than vo. 

A kinematic model based on these experimental observations which led to a 
quantitative prediction for the sedimentation rate was presented by Ponder (1925) 
and independently by Nakamura & Kuroda (1937) and will be referred to henceforth 
as the PNK theory. These authors argued that, since the thickness of the liquid layer 
under the downward-facing surface is typically observed to be small and independent 
of time, the portion of clarified fluid formed under this surface should be instant- 
aneously added to the clear fluid above the horizontal interface. Thus, the vessel is 
assumed to remain filled with suspension everywhere below a horizontal interface 
which moves with an enhanced velocity (i.e. a velocity greater than v0). The volumetric 
rate a t  which clarified fluid is formed then equals vo times the cross-sectional area of 
the vessel a t  the top of the suspension plus the horizontally projected area of the 
downward-facing surface below the top of the suspension. Of course, this volumetric 
settling rate must equal the area of the interface a t  the top of the suspension times 
its vertical velocity. 

For inclined settling between parallel plates (i.e. in a container as shown in figure 1)  
these results become the more familiar expressions 

v b  H x(t) = 0 COB 01 ( i + b s i n a ) ,  

H _ -  dH - -vo (I  +b sina) , 
at 

where 8 ( t )  is the volumetric rate a t  which clarified fluid is formed per unit depth in 
the third dimension of the vessel (hereafter referred to as the settling rate) and H ( t )  
is the instantaneous height of the suspension, a is the constant angle of inclination and 
b is the spacing between the plates as shown in figure 1.  Thus, according to the PNK 
theory, the enhancement to the velocity of the interface is ( H l b )  sin a which, of course, 
can in principle be made arbitrarily large by choosing the appropriate aspect ratio 
H l b  for a given angle of inclination. 

Several experimental studies have been performed to date on sedimentation in 
tilted tubes and beneath inclined boundaries (e.g. Kinosita 1949; Pearce 1962; Graham 
& Lama 1963; Oliver & Jenson 1964; Vohra & Ghosh 1971; Zahavi & Rubin 1975). 
For some systems, the results were found to be in good agreement with (1 .1)  and (1.2) 
while for others the agreement was poor. In  general, there seems to be a consensus in 
the literature that the PNK theory gives an upper bound to the settling rate although 
both Zahavi & Rubin (1975) and Kinosita (1949) have reported higher rates under 
some conditions. Kinosita ( 1  949), who undertook one of the more complete experi- 
mental project,s on the subject, also noted the existence of strong convection 
currents forming a vortex in the suspended phase with particle velocities as high as 
100 times the sedimentation velocity. 



438 A .  Acrivos and E.  Herbolzheimer 

A few attempts have also been made to extend the PNK theory using more elaborate 
kinematic models (Graham & Lama 1963; Oliver & Jenson 1964; Vohra & Ghosh 
1971; Zahavi & Rubin 1975)) which led to equations somewhat more involved than 
(1.1) and (1.2). However since all these expressions contain adjustable parameters 
which in general are complicated functions of concentration and of the geometry of 
the vessel and must be evaluated by finding the best fit to inclined settling data, the 
usefulness and significance of these extensions of the PNK theory is unclear. 

All such purely kinematic models suffer from at least two serious limitations. 
Clearly, they can provide no information about such flow characteristics as the state 
of motion and concentration distribution within the suspension, the thickness of the 
thin fluid layer beneath the downward-facing surface, etc. But more importantly, 
their range of validity is unknown. Thus, for example, equations ( 1 . 1 )  and (1.2) 
cannot be used for design purposes with any degree of confidence since it is impossible 
to tell a priori, on the basis of the PNK theory, under what set of conditions, if any, 
they can be expected to apply. Evidently then, a more fundamental approach is 
required. 

An important contribution to  the subject was the recent work of Hill (1974) and of 
Hill, Rothfus & Li (1977) who, to the authors' knowledge, were the first to study the 
phenomenon theoretically using the appropriate equations of continuum mechanics. 
Hill et aE. limited their investigation to very dilute suspensions of solid spheres under 
conditions of negligibly small particle Reynolds numbers. Hence, the settling velocity 
of the individual particles is given by Stokes' law 

(1.3) 

where a is the radius of the spheres, ps is their density, pf is the density of the fluid, ,u 
is the viscosity of the fluid, and g is the gravitational constant. On using dimensional 
analysis, it  is easy to show (cf. 0 3 below) that, aside from the geometric factors such 
as the shape of the container and the angle of inclination, the process is governed by 
two dimensionless groups : R, a sedimentation Reynolds number, and A, the ratio of a 
sedimentation Grashof number to R, 

u - 2 2  
0 - sa (P, - Pf) S/Pt 

where 1 is a characteristic length of the macroscale motion (which Hill et al. (1977) 
took to be the initial height of the suspension), and co is the initial volume fraction of 
solids which is assumed to be initially uniform. Hill et al. (1977) obtained numerical 
solutions to the appropriate equations of motion for this system and determined the 
sedimentation rates in various upward-pointing cones. They also performed experi- 
ments, the results of which compared favourably with their theoretical predictions. 
The range of parameters covered by Hill, Rothfus & Li's work are: (i) theory: 
0-8 < R < 6.5, 250 < A < 25000, 30" < a < 43"; (ii) experiments: 0.8 -= R < 1.5, 
2800 < A < 29000, 30' < a < 43', and 2 x 3 0-7 < co < 2 x These authors con- 
firmed the existence of a rapid convective motion within the main body of the suspen- 
sion [already noted by Kinosita (1949)l and measured the corresponding particle 
velocities, which they found to be O( 10uo). Finally, by extrapolating their results, these 
authors concluded that the PNK theory gave the correct expression for the settling 
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rate in the dual limit A+m and R-t  0, but of course such a conclusion can only be 
viewed as tentative on account of the limited range and accuracy of the numerical 
solutions and experiments in their work. 

In the present paper, we shall investigate this phenomenon theoretically using 
analytical techniques. Our treatment will be limited to  suspensions of identical 
spheres, laminar flow, and negligibly small particle Reynolds numbers (the same 
conditions as in Hill, Rothfus & Li’s study) but the geometry of the settling vessel as 
well as the concentration will be left arbitrary. Although for simplicity most of the 
analysis will be developed for two-dimensional vessels only, the extension to three- 
dimensional flows is straightforward and the principal conclusions to be obtained 
below carry over to the three-dimensional case with little or no change. 

We shall consider in detail the case A 9 1 with RA-* < O(1) and shall show that, 
as A + 00 and provided the flow remains laminar, the settling rate is that given by the 
PNK theory. Furthermore, we shall derive expressions for the velocity fields both 
within the clear-fluid slit underneath the downward-facing surface as well as in the 
bulk of the suspension. Our results then will yield a fairly complete quantitative 
picture of the settling operation under these circumstances, but more importantly, 
they will provide a sound basis for extending the analysis to a more general set of 
conditions where the simplifying assumptions of the present work no longer hold. We 
shall also discuss briefly the application of our theory to the industrially important 
process of continuous inclined settling. Finally, the results of our analysis will be 
compared with observations of inclined settling experiments which were performed 
in our laboratory. 

2. Kinematics 
We begin by showing that several important results can be derived which are 

independent of the details of the flow field. We treat the suspension as an effective 
fluid and express the ensemble-averaged fluid and particle velocities in terms of the 
bulk average velocity, u, and the average slip velocity, us, defined as 

u = (l-c)uf+cup, ( 2 . 1 4  

us = up - u, (2.lb) 

Assuming that the particles and fluid are incompressible, the dimensionless 
where c is the local volume fraction of solids. 

ensemble-averaged fluid and particle continuity equations can be combined to give 

v . u = o  (2.2) 

and (2.3) 

where g is the local volume fraction of solids divided by co, a characteristic value of the 
volume fraction in the suspension, typically the initial value. In  the above, and in 
what follows, all velocities have been made dimensionless by division by vo, the average 
settling velocity in a container with vertical walls of an individual sphere in the 
suspension with volume fraction co, all position co-ordinates by division by some as 
yet unspecified length scale 1 (typically a characteristic height of the suspension), and 
the time by division by l/vo. 

ag/at + U, . vg = - gv . u,, 
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We shall now restrict our attention to flows in which the Reynolds number based 
on the relative motion between the particles and the fluid is negligibly small: a con- 
dition that is satisfied in most systems of practical interest owing to the small size and 
settling velocity of the suspended particles. With this restriction, the interaction 
between the particles and the fluid appears only in the drag which must be balanced 
by the gravitational force on the particles due to their excess weight. Hence, if we 
suppose that the effects of particle-particle interactions depend only on the local 
particle concentration, we can define a function f ( c )  such that the dimensional slip 
velocity u,* is given by 

where uo is the Stokes velocity as given by (1 .3), e is the unit vector in the direction of 
gravity, and f ( c )  is a monotonically decreasing function with f(0) = 1. Then, by 
definition, vo = u o f ( c o )  so the dimensionless slip velocity is 

u,* = u o f ( c )  e ,  (2.4) 

us = F ( c )  e ,  (2 .5)  

where F ( c )  = f ( c ) / f ( c o ) .  

Substituting (2.5) into the particle continuity equation (2.3) yields 

a$/at + up. V$ = - c0 $F’(c) e . V$ 

where P’(c) = dF/& - O(1). 

Let us next consider the case when $ is initially equal to unity everywhere within 
the suspension, which is the usual initial condition for batch sedimentati0n.t Then 
initially, the right-hand side of (2.6) vanishes identically everywhere except on a sur- 
face where $ undergoes a jump from 0 to 1 (at t = 0 this surface usually coincides with 
the downward-facing wall and the top of the suspension) and near the upward- 
facing walls where $ rises to its maximum value $,. Hence, in view of (2.6), $ must be 
a constant along particle streamlines and, therefore, throughout the duration of 
the settling process $ = 1 within that portion of the flow field containing particles. 
This is true everywhere except near the upward-facing surface where the particle 
streamlines terminate and $ rises from 1 to Qnl. Although, as is well known from 
the theory of vertical sedimentation (Kynch 1952), this jump in concentration can 
broaden and cause concentration gradients to back up along the particle stream- 
lines, it  will be shown in the next section that when A % 1 the region within which $ 
increases above 1 is restricted to the bottom of the vessel and to a thin layer along the 
upward-facing surface. Consequently, when A 1 , we can subdivide the domain into 
three regions: (a )  a particle-free region where $ = 0 ;  (b )  the core of the suspension 
where 4 E 1 ; and (c) a region at the bottom of the vessel and a thin layer along the 
upward-facing surface where $ rises to its maximum value. We also note that the 
boundary between regions (a )  and (b )  is sharp, whereas the Concentration may vary 
continuously in the sediment layer. 

t Requiring the suspension to be initially uniform may appear t o  impose a severe limitation 
in this analysis. However, a t  the start of both vertical and inclined settling experiments, rapid 
small-scale mixing motions are invariably observed which seem to quickly smooth out any 
perturbations in the initial concentration distribution. Thus, it  would appear that the settling 
operation proceeds as if the initial concentration in the suspension were uniform. 
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clear fluid and 
suspension 
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FIQURE 2. Definition of the variables used in the kinematic analysis. 

The results derived so far have a number of interesting implications and lead 
directly to the PNK theory if certain well-defined conditions are met. For simplicity, 
we shall consider a two-dimensional vessel with one downward-facing and one upward- 
facing surface and shall define a Cartesian co-ordinate system X ,  Z with origin a t  the 
point of intersection between the two surfaces (cf. figure 2 ) .  The extension of the 
present analysis to more general vessel geometries is straightforward. 

To begin with, let h ( X , t ) - Z  = 0 be the equation of the interface between the 
suspension and the particle-free fluid. Since the motion of this interface is determined 
by that of the particles, we find from the kinematic condition that, at  h = 2, 

(l+ht)-&ah/at = -up." = -(u+u,).n, (2 .7)  

using ( 2 . l b )  and with n being the inner unit normal. Integrating ( 2 . 7 )  along the 
interface ABC (cf. figure 2 )  and noting that ds, the corresponding line element, equals 
(1 + h:)+ d X ,  we obtain 

where A,  C, X,(t), and X,(t)  are as shown in figure 2 .  By use of the divergence theorem 
and the fact that u . n = 0 on the walls of the vessel, the second term of (2 .8 )  equals the 
integral of V . u over the volume of the region containing particles which, in view of 
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(2.2) vanishes identically. In addition, the left-hand side of (2.8) equals the dimension- 
less settling rate, S(t), as defined in the last section. Thus, we obtain the general result 

S(t) = u,. n ds. (2.9) s," 
When the Reynolds number based on the relative motion of the particles and fluid 

is small, us is given by (2.5) and the settling rate is determined by the concentration 
on the interface. But since, as remarked earlier, Q = 1 everywhere in the suspension 
provided that A 9 1, us = e on the interface. Therefore, with e .n ds = d X  along 
AC,  (2.9) becomes 

which is the same as the PNK result except for the - X,(t) term. We shall show in the 
next section, however, that X,(t) is a t  most O(A-4) when A is large, and hence we can 
conclude that the settling rate as given by the PNK theory is correct, provided that (i) 
the suspension is monodisperse, (ii) the particle Reynolds number is small, (iii) the 
initial concentration distribution is uniform, (iv) A is large, and (v) the interface 
between the clear fluid layer and suspension remains stable. 

Thus, contrary to the suppositions of previous workers, the PNK theory correctly 
predicts the instantaneous volumetric settling rate regardless of the details of the 
fluid motion (provided, of course, that the above conditions are satisfied); however, 
this conclusion does not imply that the PNK theory correctly predicts the movement 
of the interface whose position depends on the particle velocity. The latter must be 
found by solving the appropriate momentum equations. In  $ 3  we shall show that, 
when A 9 1, (i) the particle-free layer underneath the downward-facing surface is 
infinitesimally thin; (ii) the interface between this thin layer and the suspension is 
stationary; and (iii) the remaining segment of the interface is horizontal. In  other 
words, we shall show that the curve ABC of figure 2 can be approximated by AB'C 
of which AB' is stationary and B'C is horizontal with height H ( t ) .  Thus when A 9 1 
all of the new particle-free fluid formed must accumulate a t  the top of the vessel and 
hence the PNK theory also predicts the interface motion correctly. 

We close this section by showing briefly how the present analysis carries over to 
the case of continuous settling in which suspension of uniform concentration c, is 
introduced at  a constant rate into the settling vessel while concentrated sediment and 
pure fluid are withdrawn from the bottom and top respectively. The precise location 
of the feed point is unimportant to a first approximation but, clearly, under efficient 
operating conditions, it will lie within the core of the suspension, i.e. somewhere 
below the curve ABC of figure 2,  while the overflow of the particle-free fluid will be 
drawn off slightly above C .  The present theory applies unchanged to this system 
except that h is now time independent so the left-hand side of (2.8) vanishes. Also, 
the second term of (2.8) is no longer zero but equals instead the difference between 
the volumetric rate a t  which concentrated suspension is removed from the bottom of 
the vessel and that at which suspension is fed into the system. But on account of the 
overall mass balance, this difference in flow rates must equal the rate at  which particle- 
free fluid is produced and drawn off the top, i.e. 8. Thus, in the general case, (2.9) is 
recovered once again and this reduces to (2.10) under the same conditions as before. 
Of course, in contrast to the case of batch settling, S and X, - X, are time independent 
and hence no further information is needed a t  this stage because, for a given vessel 

S(t) = X,(V -X, ( t ) ,  (2.10) 
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shape, (2.10) gives the minimum size of equipment required to give a desired settling 
rate, or conversely, the maximum settling rate obtainable in a given vessel. 

3. The details of the flow field 
To obtain the equations of motion we take the ensemble average of the momentum 

equation and neglect the Reynolds stress terms relative to the bulk stress because the 
Reynolds number based on the flow around the particles is assumed to be small. We 
further assume that the suspension behaves like a Newtonian fluid with an effective 
viscosity depending only on the local volume fraction of particles. Under these 
conditions the ensemble-averaged momentum equations for a uniform particle con- 
centration become 

where p($) = 1 + c0$(p,/pf- 1))  p($ )  is the effective viscosity of the suspension divided 
by that of the pure fluid, and R and A are defined as in (1.4) except that vo = uo f (co)  
replaces uo. Finally, P is the dimensionless pressure corresponding to  p (made 
dimensionless with Z/,uvo) minus the dimensionless hydrostatic pressure head due to 
the suspension of concentration co, i.e. 

Rp(4) Du/Dt  = - V P -  A( 1 - 4) e +p($) V2u, (3.1) 

( 3 . 1 ~ )  V P = V p - - ( c o p , + ( l - c o ) p f ) e =  gE2 V p - A  
P O  

Because of this definition for P, the body force on the suspension appears as a buoyancy 
term -A(  1 - 4) e, which tends to induce an upward motion in the suspension wherever 
the concentration is less than co (i.e. 4 < 1)  or conversely a downward flow wherever 

In the vast majority of cases, A is O( lo5) or larger, if 1 is set equal to the instantaneous 
height of the suspension, and hence i t  appears advisable to consider the asymptotic 
solution of (3.1) as R+co. Under these conditions, the buoyancy term in (3.1) clearly 
plays an important role. This term vanishes within the suspension, where 4 = 1,  but 
is large within the clear-fluid layer underneath the downward-facing surface where it 
induces strong velocity currents. In  fact, the flow within this region is qualitatively 
similar to natural convection past a heated surface which, as is well known, is also 
induced by buoyancy forces. 

3.1. The particle-free layer 

We anticipate that the thickness of the particle-free layer becomes vanishingly small 
as A -+ co and hence we find i t  convenient to introduce the boundary-layer co-ordinates 
(x, y )  wit>h x denoting the co-ordinate along the downward-facing surface and y the 
co-ordinate normal to  it. The corresponding velocity components are u and v. 

Now, according to the kinematic condition (2.7),  v is O(1) along the interface 
between the suspension and the particle-free fluid, and hence it is similarly O(1) 
within the clear-fluid layer. In turn, this implies from continuity that the longitudinal 
velocity u is, in order of magnitude, inversely proportional to the thickness of this 
layer. But since, on account of (3.1), the viscous forces must balance the buoyancy 
term in this region, it follows that u = O(A3) and that the thickness of the layer is 
O(A-4). We therefore define the following stretched variables, 

$ >  1.  

6 = R - h ,  v” = V ,  ij = A#y, ij - $(x, t )  = 0,  (3.2) 
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where the last expression represents the equation of the suspensionlclear layer inter- 
face in the new scaled variables. Thus, we obtain in lieu of (3.1), 

and 
A-Q aP/ag+ sin a(x) = O(R-*) + O(RR-%), (3 .3b )  

where a(x) is the local angle of inclination of the surface, which need not be planar. 
In  addition we have for the continuity equation 

a.ii/ax + aapg = 0.  ( 3 . 3 c )  

I n  obtaining (3 .3a) - (3 .3c)  all terms which arise in transforming to the boundary-layer 
co-ordinates due to the curvature of the surface have been assumed negligibly small 
which, for this analysis, requires that daldx  = o(A)) everywhere. Thus, we shall 
consider only smooth surfaces which satisfy da/dx = O( l),  although this restriction is 
not essential to the development of our theory. Also, in most cases of practical interest, 
R is O( l ) ,  i.e. RR-f = O(A-f) and hence, in what follows we shall neglect the first 
term on the right-hand side of ( 3 . 3 ~ )  although again this simplification is not essential 
to  our analysis as will be shown a t  the close of 3 3.2. 

The boundary conditions are: 

(a )  . i i = B = O  at g = O ,  ( 3 .4  a)  

( c )  a.ii/ag = o(1) a t  ij = 6, ( 3 . 4 c )  

( b )  A--fa8//at+.iia8/lax-G = sina(x) a t  ij = 8, (3 .46 )  

where ( 3 . 4 b )  is the kinematic condition while justification for ( 3 . 4 ~ )  will be postponed 
until later in 4 3.2.  

By considering the motion in the suspension it will be shown in 3 3.2 that P is a t  
most O(A4) at the interface y” = 6. Therefore, in view of (3 .3b ) ,  the pressure within the 
clear-fluid layer is a t  most O(A*) and the term A-l aP/ax in ( 3 . 3 ~ )  may be neglected 
a t  this stage of the analysis. Hence, the solution of ( 3 . 3 )  which satisfies ( 3 . 4 ~ )  and 
( 3 . 4 ~ )  is 

.ii = (g8-~g2)cosa(x)+o(1), ( 3 . 5 a )  

a = - $82 d(6cos a)/dx + Qg3d (cos a)/dx + o( 1 ) .  (3 .5b )  

(3 .6 )  

The equation for 6 
A-$ a8/7at + J2 cos a(x)  a8//ax = sin a(x)  + 4Z3 sin a ( x )  daldx, 

is then obtained by substituting ( 3 . 5 ~ )  and (3 .5b )  into the kinematic condition, (3 .4b ) .  
Equation ( 3 . 6 )  can be solved by the method of characteristics to determine the time 

dependent behaviour of the flow within the clear-fluid layer.? I n  order to simplify 
the analysis, we shall consider the special case when the downward-facing surface is 
flat (i.e. a(x)  = a, a constant) although this method can also be used foI general shapes. 
Introducing the characteristic curves along which 

(ax/a7), = &cot a: (3 .7)  

t The use of pseudo-steady velocity profiles in (3.6) is justified by the fact that the time 
dependent terms in the momentum equation are O(RA-3) and therefore negligible relative to 
the other terms in (3.6). 
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with T = tA*sina, we obtain for (3.6) that 

dcT/dT = 1 ( 3 4  

along a characteristic. Consider the initial and boundary conditions 8(x, 0) = 0 and 
s"(0,~) = 0. Then, along those characteristics which cross the x axis, (3.8) gives 
$ ( x , T )  = 7. On substituting this into (3.7) and integrating, we thus obtain for the 
shape of the characteristic with x intercept 

(3.9) 8 = 7 = (3(x - 6) tan a)*. 

Similarly, for the characteristic crossing the 7 axis a t  r0 we find 8(x, 7) = T - r0 and 
hence the shape of this characteristic is 

t = T - I - ~  = (3x tan a)*. (3.10) 

It is apparent from (3.9) that, for fixed x, tincreases linearly with time until it reaches 
its steady-state value for that, x (i.e. until the characteristic passing through the origin 
is reached) and that for larger times $remains steady. Hence, at any given x, 8reaches 
its steady state when 

which is negligible compared to the O(1) time scale of the overall settling process. 
Since the essential features of the above analysis carry over to the general case, we 

can conclude that, within an O(h-4) time interval, a steady interface will be reached 
whose shape is given by 

t = A-*( 3% tan a)f/sin a, 

(3.11) 

if we set 8(0) = 0. Actually, as is common with any standard boundary-layer analysis, 
the above solution does not apply near the leading edge, x = 0, where the longitudinal 
and transverse scales and, therefore, the terms a2u/i?x2 and a2u/i?y2 in the x momentum 
equation are of comparable magnitude; consequently, although &O) must be small if 
the velocities in the two regions are to match, it will still be finite. In  fact, its order of 
magnitude depends on the surface geometry near the leading edge. 

Consider first the case of a surface which is locally wedge-shaped. Here a remains 
O( 1)  as x -+ 0 and hence we see from (3.11) that the thickness of the particle-free layer, 
A-48, will be O ( x )  only if the longitudinal scale in the leading edge region is O(A-4) 
and s" = O(A-Q). The corresponding results for a surface for which a = O ( x )  as x -+ 0, 
are that the longitudinal scale is O(h- l )  and 8 = O(A-3). A somewhat more precise 
version of (3.11 ) is, therefore, 

where C is O(A-*) or O(R-2) depending on the surface geometry near x = 0. At any 
rate it is evident that, for x = O(l) ,  the difference between the above and (3.11) is 
negligible to the degsee of approximation to which the present analysis has been 
developed. 

Up to this point, the definition of the characteristic length, I ,  has been kept arbitrary. 
However, since the process is pseudo-steady to first order (except for a short time 
interval initially), an appropriate choice would be H (cf. figure 2), the instantaneous 
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height of the suspension above the origin, because this choice assures that all stretched 
quantities remain O( 1)  throughout the duration of the process. Thus, R and A become, 
respectively, 

R = W a W o )  Pf(P, -Pf) S/P, and A = W w 2  co/f(co). (3.12) 

Of particular interest is a,, the maximum thickness of the particle-free layer, which 
in view of (3.2) and (3.1 1) is given approximately by 

Evidently, the PNK theory applies for predicting the instantaneous height of the 
suspension only if 8, is much less than the length of the effectively horizontal portion 
of the suspension-clear fluid interface, i.e. the length BC or B'C of figure 2. 

3.2. The motion within the suspension 

.To complete our description of the sedimentation process, it  is necessary that we 
examine the flow within the particle-containing region where q5 = 1. Here, the buoyancy 
term of (3.1) is absent but, in view of our analysis in $3.1, the longitudinalvelocity is 
O(A)), a t  least close to the interface between the suspension and the particle-free 
layer underneath the downward-facing surface. Hence, the inertia terms are O(RA8) 
which, owing to the absence of the buoyancy term, must be balanced by the viscous 
and, perhaps, the pressure terms of (3.1). But in most cases of practical interest, 
R 2 O(1)  and A 1 [with R and A defined as in (3.12)] and, therefore, RAt the 
Reynolds number of the motion is large. This suggests a standard boundary-layer 
type analysis. 

The buoyancy-induced motion in the particle-free region imparts a longitudinal 
velocity at the interface equal to [cf. (3.2) and (3.5a)I 

u = &i62cosa(x), (3.13) 

where 8 is given by (3.11). A boundary-layer type flow then develops analogous to a 
conventional boundary layer past a moving surface. Here, however, the characteristic 
Reynolds number is RAf rather than R as is usually the case and hence the appropriate 
boundary-layer stretching transformations are 

5 = A-tu, jj = @A*)* y ,  ;ij = R-*(&%f)*v, (3.14) 

where R = Rp( 1)/p( 1)  is the Reynolds number based on the properties of suspension 
with Q, = 1 rather than on those of the pure fluid and x is now measured along the 
interface and jj normal to it with U and ;ii being the corresponding velocities. From 
(3.14) we see that 

(au/ay)g=o = (RA)j (az /a j j )g=o ,  

which will match with the corresponding term from the solution in the particle-free 
layer, if the second approximation to that solution, i.e. the error term in (3.5a), is set 
equal to O(RjA-i). Thus, as long as (8i i /8g)g=o is numerically an O(1) quantity, the 
boundary condition ( 3 . 4 ~ )  is justified since ( X / a g ) , = ~ ,  which was assumed to be o( l ) ,  
is in fact O(&i-i). 
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In terms of the scaled variables of (3.14), the momentum and continuity equations 
become, respectively, 

( 3 . 1 5 ~ )  

a P / @  = O(A*), (3.15 b)  

and a;il/ax+ av/ag = 0. ( 3 . 1 5 ~ )  

We note from (3.14) that, with R = O(l) ,  v is O(A4) whereas, in the particle-free layer, 
v is O(1). Consequently,, when A % 1 and with i j  = 0 denoting the interface between 
the two regions, we have to first order: 

u = &Pcosa(x), v = o a t  3 = 0. ( 3 . 1 6 ~ )  

We also require another boundary condition for V as well as an expression for aP/ax 
which will depend, of course, on the state of motion within the bulk of the suspension 
and on whether the thickness of the boundary layer is much smaller than or comparable 
to the width of the vessel. 

Let us consider first the case when the height of the suspension is much greater than 
the boundary-layer thickness, (&if)-*, and also the spacing b of the plates is effectively 
infinite. Then since the characteristic length scale in both the x and y directions is 
O(1) in the core of the suspension, u and v must also be of comparable order. Further- 
more, the entrainment velocity into the boundary layer must be of the same order 
as the boundary-layer velocity v so both u and v must be O(R--*A*) within the bulk 
of the suspension. Consequently, the second boundary condition for U is 

U = O  at g = w .  (3.16b) 

Also, from (3.1) we see that the flow within the core is inviscid with a pressure of 
O(A*); hence, on account of (3.15b) the preseure is O(Af)  everywhere within the 
boundary layer and, therefore, can be neglected in ( 3 . 1 5 ~ ) .  

Even with this last simplification, however, the system (3.15)-(3.16) can, in general, 
be solved only numerically; but, in the special case of constant a (which corresponds 
to the commonly used geometry of an inclined planar surface) a similarity solution 
applies. Specifically, on account of (3.11) and ( 3 . 1 6 ~ )  we let 

(3.17) 
- 
u = ~ ( 3 x  tan&)% (cosa)f’(y), y = i j /g (x) ,  

which, when substituted into (3.15)-(3.16), yields 

g(x) = [&(3 tan a)# cos a]-* xi, 

and f [# +ff” - *(f’)Z = 0, (3.18) 

with boundary conditions f(0) = O,f’(O) = 1, andf’(oo) = 0. Equation (3.18) will be 
recognized as the familiar Falkner-Skan equation without the term arising from the 
pressure; also, the boundary conditions are different. This boundary value problem 
was solved numerically and the resulting functions f ‘(y) (which is proportional to ‘ii) 
and (5f-yft)/6 (which is proportional to - V )  are shown in figure 3. We note that f ’  
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FIGURE 3. The solution of equation (3.14) wheref’(7)oc ;1z and ( 5 f - ~ j f ’ ) / S o c  -8. FIGURE 3. The solution of equation (3.14) wheref’(7)oc ;1z and ( 5 f - ~ j f ’ ) / S o c  -8. 

decreases monotonically from 1 to 0 with f approaching asymptotically the expression 
1.023- 1.07e-1*023’1 as r+co. 

If, on the other hand, the spacing of the plates is decreased, the large velocity a t  
the clear-fluid interface may set the bulk of the suspension into a rapid circulating 
motion similar to that observed in closed cavities with one moving wall (cf. Pan & 
Acrivos, 1966). In  fact, for very large values of &I+, the effective Reynolds number 
for the flow in the suspension, the motion should resemble the well-known Batchelor 
(1956) model of high Reynolds number steady flow with closed streamlines; i.e. a 
constant vorticity inviscid core surrounded by a thin boundary layer. 

Indeed, a mathematical description of the flow along the lines of Batchelor’s model 
can be constructed without too much effort. The velocities in the bulk of the suspension 
will now be O(R*), and the flow will be inviscid; also the pressure will be O(.&I*) and 
hence, in general, must be retained in ( 3 . 1 5 ~ ) .  Let us consider the case of the parallel 
plate geometry and let us suppose for the sake of simplicity that the aspect ratio of the 
core region, i.e. the ratio of its length to its breadth, is large. Under these conditions 
the streamlines of the inviscid constant vorticity flow in the core are effectively 
parallel to the inclined walls of the container, the pressure is constant, and the corres- 
ponding longitudinal velocity is given by 

u = w b ( + - y H / b ) ,  (3.19) 

where w is the unknown dimensionless uniform vorticity in the core. This core is 
separated from the interface between the particle-free region underneath the down- 
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ward-facing step and the suspension by the boundary layer studied earlier within 
which the velocity still satisfies (3.15) and (3.16 a) plus 

Z-++A-fwb as g-+00, 

in lieu of (3.16 b) .  It is evident that a similarity solution to the boundary-layer equations 
no longer applies. 

Now, as shown by Batchelor (1956, p. 184), the value of the uniform vorticity w 
can be determined with ease when the pressure along the boundary layer surrounding 
the inviscid core is constant, which, in view of (3.19), is also the case here. Hence, on 
using Batchelor's equation (3.6), assuming that, within the boundary layer, 5 = 0 a t  
the surface of the upward-facing wallt and neglecting any end effects in the dual 
limit b/H < 1, (RR*)-* < b/H,  

00s -1 a p = (go U2dX)*, ( 3 . 1 9 ~ )  

where, in view of (3.13), U = & I @ 2 ~ ~ ~ a ,  with $given by (3.11). On evaluating these 
various expressions for constant a, we thus arrive at 

2 

So far we have only considered cases where the spacing of the plates is much larger 
than the thickness of the boundary layer, i.e. b/H 9 (En+)-*. When this condition 
no longer holds (as was the case in our experiments to be described in $4), equations 
(3.15) apply everywhere within the suspension (except of course within singular 
regions near the top and bottom) but the boundary condition a t  g-+ 00 must be replaced 
with 

w = 0, u = - cs (x )  a t  ij = (RR*)* b(x) /H,  

where y = b(x ) /H  is the dimensionless equation for the position of the upward-facing 
surface and us(x)  must be determined by examining the motion of the concentrated 
sediment layer on the upward-facing surface. I n  this case the pressure will be O(BA*) 
and must be obtained from (3.15) as part of the solution. 

We have shown then that for all of these possible flow regimes the pressure in the 
bulk of the suspension is a t  most O(EA*) while the change in the pressure across the 
boundary layer is only O(A*). Thus, the pressure at the interface between the clear 
fluid layer and the suspension can be a t  most O(RA*) which, together with (3.3b), 
justifies our earlier step of neglecting the pressure term in ( 3 . 3 ~ )  when solving for the 
flow within the clear-fluid layer. These results can also be used to deduce some useful 
information concerning the shape of the interface at the top of the suspension (i.e. 
the segment B'C in figure 2).  For, as is evident from (3.1 a ) ,  the presence of the particles 
increases the dimensionless pressure gradient by an O(A) amount, and, therefore, the 
change in the vertical height across the top of the suspension will be a t  most O(A-3) 
if the spacing of the plates is very large, and O(8A-4) otherwise. Thus, as A +  co and 
I? remains fixed, the top of the suspension becomes horizontal. 

Up to this point, we have confined our discussion to the case in which RR-* = of 1). 

t Actually this condition should be replaced by the requirement that u = - U8(x) ,  the velocity 

- - 

of the sediment layer. Since the latter may be large, (3.19a) may underestimate the value of o. 
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Under some conditions, however, the Reynolds number R may be moderately large 
so that the parameter RA-4 could be, numerically, an O( 1 )  quantity. This results in 
the following modifications of our analysis: 

The basic equations and stretching transformations derived in this section remain 
unchanged except that the right-hand side of ( 3 . 3 ~ )  must now be retained. I n  addition, 
8, the thickness of the particle-free region, as well as the associated velocities ii and 5 
are no longer independent of the flow within the suspension for, besides ( 3 . 4 ~ )  and 
(3 .4b ) ,  the boundary conditions a t  the interface are the following. 

(a)  Continuity of velocity: 

( 3 . 2 0 ~ )  

(b )  Continuity of shear stress: 

(a.ii/@),=a = p(1) (RA-+);f (8U/a?j)g,,. (3.20 b )  

Thus, clearly, 8, C, v", U, and 3 must be obtained simultaneously. Unfortunately, the 
similaritysolution no longer exists even if a, the local angle of inclination, is a constant, 
but, of course, the appropriate system of equations plus boundary conditions can 
easily be solved numerically using standard routines. 

We note that when b / H  B 1 the flow within the bulk of the suspension will now be 
viscous, since the corresponding velocities will be O(RA-*)-i, i.e. O( l),  rather than 
O(A8) as was the case before when R was O(1). The reason for this decrease is that, 
when R is large, the thickness of the boundary layer will be O(a-4) smaller, and, 
hence, the rate of fluid entrainment will also be correspondingly smaller. On the other 
hand, when the bulk of the suspension is circulating rapidly or when the boundary 
layer extends all of the way across the container, the pressure in the suspension, 
O(ZA%), will now be O(A). Therefore, the pressure term must be retained in ( 3 . 3 ~ )  
and hence the equations describing the flow in each of the two regions must be solved 
simultaneously. 

A final possible flow regime can exist when the spacing of the plates is of the same 
order as the thickness of the clear-fluid layer, i.e. when b / H  N O(A-4). Then the stress 
within the suspension is comparable to that in the clear-fluid layer so the boundary 
condition (3.4~) must be suitably modified.Also, the pressure becomes O(R) and must 
be determined as part of the solution. Thus, once again, the equations describing the 
flow in each of the two regions must be solved simultaneously; however, the analysis 
simplifies because, to first-order, the flow is essentially parallel. In fact, a number of 
interesting phenomena can occur and since, as seen from (1.2),  the greatest augmenta- 
tion to the settling rate is obtained in long narrow tubes (i.e. when b / H  < l ) ,  this case 
will be considered separately in another publication. 

We close this section by examining briefly the flow in the concentrated sediment 
layer on the upward-facing surface. As mentioned in $2 ,  the fact that $ must attain 
its maximum value a t  this surface results in the creation of concentration gradients 
which could propagate back into the bulk of the suspension along the particle stream- 
lines. However, in regions where # > 1, the large buoyancy term in (3 .1 )  tends to 
induce a downward motion. In  fact, the flow here is analogous to that in the clear-fluid 
layer in that the buoyancy term can be balanced only in a thin viscous layer im- 
mediately adjacent to the upward-facing surface. But, whereas in the latter the inter- 
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face is self-sharpening so that the concentration distribution is known, in the sediment 
layer the concentration varies continuously and must be determined as part of the 
solution. 

Although a detailed solution for this problem has not been worked out, the same 
type of scaling arguments as used above show that the longitudinal velocity is, in 
order of magnitude, inversely proportional to the thickness of the sediment layer 
which must scale as [A($, - l ) / ~ ( $ ~ ) ] - *  where 41 > 1 is an appropriate average value 
of $ in the layer. Thus, when A B 1 and provided that ,u(#~) does not become too large, 
the layer immediately adjacent to the upward-facing surface is very thin. We note that 
although the velocity at the edge of the sediment layer is O(A*), the large value of 
which implies a very large viscosity ,u(#~), may render the numerical value of this 
sediment velocity appreciably smaller than the maximum velocity within the clear- 
fluid layer. 

4. Experimental observations 
Several batch inclined settling experiments were conducted in our laboratory using 

a parallel-plate geometry as pictured in figure 1. The suspending medium consisted 
of a mixture of Union Carbide UCON oils and Monsanto HB40 hydrogenated terphenyl 
oil which gave a Newtonian fluid with density 0.992 g/ml and viscosity 0.677 P a t  
21.6 "C, the nominal temperature of the experiments. The particles were close-sized 
spherical glass beads with mean diameter 137,um and density 2-42g/ml. The experi- 
ments were conducted by adding the desired amount of suspension to the vessel, 
mixing the suspension for several minutes in order to render the initial concentration 
distribution more or less uniform, and then removing the mixer and allowing the 
particles to settle. A relatively sharp interface between the suspension and the particle- 
free fluid formed almost immediately and the vertical height of the suspension, H ,  
as well as the height of the concentrated sediment layer at the bottom of the vessel 
were measured as functions of time using a cathetometer. The spacing of the plates, 
b,  was 5 cm but the other parameters were varied systematically to cover the following 
range of conditions: 

2 < H,/b < 8; 0" < a < 50"; 0.76 < R, 6 3.04; 

4.8 105 < A, < 1.5 x 107; 0.01 G c0 < 0.10. 

Under these conditions both the translational and shear particle Reynolds number 
was at most 0(10-3) throughout the flow field. Also, although the aspect ratio b / H  
was much larger than A-*, it  was only two to three times larger than (RA*)-+ thereby 
implying that the boundary laye1 in the suspension extended across most of the 
vessel. Thus the analysis of $3, and specifically (3 .5a) ,  (3.5b) and (3.11), would be 
expected to accurately describe the flow in the clear-fluid layer and its thickness; on 
the other hand, since (3.16b) would not be applicable in this case, the observed flow 
pattern could differ quantitatively from that given by the solution of (3.18). 

Some typical experimental results for the height of the suspension as a function of 
time are plotted in figure 4 together with the corresponding predictions of the PNK 
theory for c, equal to 0.10 and with H,/b = 8. The dashed lines in these figures are the 
integrated forms of (1 . 2 )  and the experimental data are seen to deviate somewhat 
from the theory. This discrepancy is due to the fact that the above theoretical 
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FIUURE 4. Height of the top interface H versus time for co = 0.10, H ,  = 40cm, and b = 5cni 
(A,, = 3.27 x 107, R, = 0.560) for different angles of inclination a: A ,  a = 0"; B,  a = 20"; C,  
a = 35"; D, a = 50". - - -, ordinary PNK theory; __ , PNK predictions accounting for the 
sediment layer. 

predictions do not account for the existence of the concentrated sediment region at 
the bottom of the vessel. Specifically, in deriving (1.2), the interface between the 
clear fluid and suspension was assumed to intersect the walls of the container a t  the 
origin which was taken as the point of intersection between the downward and upward- 
facing surfaces (cf. figure 2) .  This assumption is correct as long as the level of the 
concentrated sediment layer does not rise above this point. When this is no longer the 
case, however, the variable H on the right-hand side of (1.2) should be replaced by 
H - H,, where H, refers to the height above the origin of the intersection between the 
top of the sediment layer and the downward-facing surface. By assuming a value for 
the volume fraction in the sediment c, and applying arguments analogous to those in 
5 1 to the sediment region, the PNK theory can easily be extended to include this 
effect. The results are shown as the solid lines in figure 4 and the agreement between 
theory and experiment is clearly excellent. 

The value of c, was calculated directly from the experimentally measured heights 
H and H, (both interfaces were essentially horizontal throughout the settling process) 
using a simple mass balance on the particles. The clear-fluid layer and thin sediment 
layer on the upward-facing surface were neglected and the concentrations in the 
suspension and sediment were both assumed to be uniform with values of c,, and c,, 
respectively. Unfortunately, c, was found to increase with time during a given experi- 
ment (a typical range was c, = 0.43 to 0-53) and, between experiments, to increase 
with the angle of inclination a and the initial concentration (the range of the average 
values was c, = 0.46 to 0.55). The variation in c, with time in a given experiment is 
probably due to the fact that the average concentration in the sediment layer on the 
upward-facing surface is relatively low (say c FZ 0.40). Then, after it flows off the wall, 
this sediment can slowly compact while remaining a t  the bottom of the vessel. This 
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conjecture is consistent with the experimental observations that the sediment on the 
wall flowed freely- indicating that the concentration there was not too large - and that 
after the settling process was complete, the sediment in the bottom of the container 
continued to  compact. It is also likely that the concentration in the thin layer on the 
wall depends somewhat on the conditions of the experiment, thereby explaining the 
variation in c, between experiments. 

In  calculating the theoretical curves in figure 4, the average value of c, for each 
experiment was used. It should be clearly kept in mind, however, that c, was determined 
directly from the experimental data and not from a comparison of the theory and 
experiments. The only other quantity needed for the theoretical calculations was uo, 
the settling velocity of the particles, which was obtained from independent vertical 
settling measurements using the same suspension as in the inclined settling experi- 
ments. These values for uo were found to lie, typically, within 5 yo of those derived 
from Barnea & Mizrahi's (1973) correlation for the vertical settling rate as a function 
of concentration. Thus, it  should be emphasized that the theoretical curves were 
obtained without the use of any adjustable parameters. 

In  addition, our qualitative observations of the flow field can be summarized as 
follows. First of all, it  appeared that the boundary of the particle-free layer under the 
downward-facing surface formed immediately after the mixing had ceased and that 
the flow within this region reached a steady state after only a few seconds. Moreover, 
a t  the start of the process when the region of particle-free fluid above the suspension 
was very thin, the interface between clear fluid and suspension remained very close 
to the surface of the downward-facing step all the way to the top of the suspension, 
where, after making a sharp turn, it  became horizontal. At later times however, this 
layer began to broaden gradually a t  a distance of about 2cm below the horizontal 
part of the interface, no doubt because the fluid had to slow down as it approached 
the region of pure liquid above the suspension. Of course, when this region is shallow, 
continuity requires that the longitudinal velocity be large, but when its depth becomes 
O( 1) )  then both velocity components should be of the same order, i.e. O( l ) ,  and, again 
owing to continuity, the particle-free fluid slit ought to broaden under these conditions. 
A t  any rate, as was said earlier, this broadening effect was confined to a distance of 
about 2 cm from the top of the suspension, and hence the analysis of Q 3 should apply 
over most of the length of the clear-fluid layer. 

The measured thickness of this layer as a function of the distance along the down- 
ward-facing surface is shown in figure 5 along with the theoretical result (3.11) for 
co = 0.05 and 0.10 and with a = 45". Clearly, the agreement is very good. As seen in 
Q 3.1, the theory predicts that, after a short initial period, the thickness of this layer 
a t  a given point on the downward-facing surface should be independent of both time 
and the instantaneous height of the suspension. This was indeed found to be the case 
everywhere except near the top of the suspension, where the width of the slit at  a given 
point increased with time as the top of the suspension approached. (The broadening 
of the slit is not evident in figure 5 because all of the data shown there were taken 
when the point of observation was well below the top of the suspension.) Furthermore, 
the data were obtained from several different experimental runs thereby showing the 
reproducibility of the results. 

Measurements of the velocity field are considerably more difficult to perform and, 
at  this point, we can only offer some qualitative information which was obtaihed by 
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FIUURE 5 .  The width of the clear-fluid layer versus the distance along the downward-facing 
surface for a parallel plate geometry with a = 45". 0, c,, = 0.05; 0, c,, = 0.10. The lines show the 
corresponding theoretical predictions. 

visually observing the motion of the particles. First of all, the largest velocities were 
found near the interface between the clear-fluid layer underneath the downward- 
facing surface and the suspension. This velocity was directed along the interface and 
its magnitude increased from essentially zero at the bottom of the vessel to a maximum 
value near the top of the suspension which was visually estimated to be one or two 
orders of magnitude larger than the vertical settling velocity. Furthermore, com- 
parison of the velocities of the few particles which were trapped in the clear-fluid 
layer with those of the particles on the interface indicated that, at  any given x, the 
maximum velocity in the slit occurred very close to the interface as predicted by ( 3 . 4 ~ ) .  

The flow field in the particle-containing region was considerably more complex and 
several interesting phenomena were observed. A t  the start of some of the experiments, 
a rapid circulating motion developed throughout most of the suspension. This flow 
did not conform to the model of an inviscid core with constant vorticity studied in 
9 3, because in these experiments b / H  x (RR+)-* and the boundary layer extended 
all of the way across the vessel. Therefore, in the present case, the observed circulation 
was undoubtedly due to continuity which requires that there be no net flow across a 
plane of constant x; hence the upward flow of the suspension caused by the motion of 
the clear-fluid layer must be accompanied by a corresponding downward flow else- 
where in the suspension. 

At any rate, this rapid motion within the core persisted for only a short time, 
apparently ceasing when the clear fluid above the suspension was no longer shallow. 
In fact, the circulating flow gave way to one in which the particle motion was relatively 
slow everywhere except in a thin layer adjacent to the clear-fluid slit beneath the 
downward-facing surface. The thickness of this region was difficult to determine but 
appeared to be approximately five times that of the clear-fluid layer. The particles 
close to the clear-fluid slit were observed to rise rapidly, come to an abrupt stop at  the 
top of the suspension, and then descend rapidly in a thin layer immediately adjacent 
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to that where the particles were rising. Meanwhile, the primary flow in the core was 
much slower with the particles moving primarily down the vessel. Also, near the top 
of the suspension, thin streams of rapidly moving suspension were observed to break 
away from the main flow and to descend rapidly into the bulk of the suspension. As 
these streams travelled into the suspension they dominated the flow locally, but as 
they seemed to die out rapidly they did not affect the motion further down in the 
vessel. Unfortunately, we have been unable, to date, to arrive a t  a satisfactory 
explanation for this behaviour. 

5. Discussion 
Besides leading to quantitative results, the analysis of 4 2 and 3 also provides a 

clear and fairly complete understanding of how the inclined settling process operates. 
Initially the vessel is completely filled with suspension and the presence of the particles 
creates an O(R) dimensionless hydrostatic pressure gradient in the vertical direction. 
But, since the particles are more dense than the fluid, they tend to settle vertically 
thereby creating a layer of particle-free fluid underneath the downward-facing surface. 
Evidently, this fluid does not experience the extra O(A) body force due to the particles 
and hence, owing to buoyancy, flows upward along the wall; moreover, on account 
of continuity, it  is replaced by new fluid which is entrained from the suspension into 
the particle-free layer. This fluid motion towards the downward-facing surface 
creates a drag on the particles which balances the component of the gravitational 
force tending tomake them move away from the wall. In  turn, this leads to a clear-fluid 
layer which remains thin and independent of time when A 9 1 .  

We also note that since the interface between the suspension and the particle-free 
fluid is everywhere upward-facing and since when the particle Reynolds number is 
small the particle velocity equals the fluid velocity plus a slip velocity in the direction 
of gravity, once fluid leaves the particle-containing region it cannot re-enter it. This 
must be the case because in any region where the fluid velocity a t  the interface includes 
a component directed into the suspension, the particles on the interface move with 
this velocity plus a slip velocity which is also directed into the suspension. Hence; 
since the position of the interface is determined by the presence of particles, the 
interface moves so as to prevent the entry of the fluid into the suspension. Thus, the 
entrainment of fluid into the clear-fluid layer results in an enhancement of the rate a t  
which particle-free fluid is produced over that in a vertical vessel with the same 
spacing between the plates. 

An analogous process occurs at the upward-facing surface where the settling 
particles accumulate to form a concentrated sediment layer. Here, the concentrated 
sediment is denser than the suspension in the core and hence flows down the wall to 
the bottom of the vessel where it can be collected and removed. This results in a 
sediment layer which remains thin when A 9 1. Finally, the rising fluid in the clear- 
fluid layer and the falling sediment layer drive a flow within the suspension whose 
structure is determined by the relative magnitude of 8, A, and b /H.  As we saw from 
the analysis of 4 2, however, the enhancement to the settling rate does not result from 
this convective motion but is rather due to the increase in the surface area that is 
available for creating particle-free fluid (or, conversely, for collecting particles). 

Nevertheless, the convective motion within the tank does have important 
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consequences as regards the feasibility of using the Boycott effect for designing efficient 
continuous settlers. The use of inclined settling for continuous systems is possible 
only if steady solutions to the flow field equations can be shown to exist; in particular, 
the position of the interface between the clear fluid and suspension must be stationary. 
Such solutions do not exist for all sets of conditions however. For instance, consider 
the limiting case R+O. Then, for the batch process, a solution of (3.1) satisfying the 
condition of no slip at the walls is u E 0; i.e. there would be no bulk motion and the 
particles would merely settle vertically. Thus, the only way to produce a continuous 
settler out of the system would be to operate it as a slanted vertical settler; that is to 
add new suspension and remove clear fluid and sediment uniformly a t  every point 
along the vessel. Obviously, this is not practical. 

On the other hand, we found in $ 3  that, when A is large and R = O( 1))  the interface 
along the downward-facing wall is stationary while that at the top of the vessel is 
essentially horizontal. Also, the concentrated sediment forming on the upward-facing 
surface flows down the wall so that the thickness of this layer remains thin throughout 
the process (provided, of course, that the viscosity of the sediment does not become 
too large). It should be possible in this case therefore, to achieve a steady flow pattern 
by just adding enough new suspension to the core to replace that which is settling 
out while removing clear fluid and sediment from the top and bottom of the vessel, 
respectively. Furthermore, since the flow in the suspension is relatively fast, the 
details of how the feed is added would be unimportant to a first approximation. Thus, 
continuous operation in an inclined settling vessel seems feasible provided that A is 
large and the flow remains laminar. 

We close by considering the important question regarding the range of applicability 
of the PNK theory for designing settling vessels. In  5 2 we showed that, in the limit 
of negligibly small particle Reynolds numbers, the PNK theory predicts the correct 
volumetric settling rate for monodisperse suspensions provided only that the particle- 
containing region covers the entire upward-facing surface below the top of the sus- 
pension. This condition is satisfied if the width of the clear-fluid layer is small at 
x = 0, i.e. that X, is negligible compared to XI in (2.10). As was shown in $ 3 ,  this is 
the case if A-4 < 1.  Furthermore, the analysis of $ 3 also shows that, as A +  00, the 
thickness of the clear-fluid slit vanishes, the top of the suspension becomes flat and 
that, consequently, the PNK prediction for the velocity of the interface at the top 
of the suspension applies in this limit. We also note that these results are independent 
of the details of the flow field provided, of course, that the flow remains laminar 
and that a stable interface exists between the particle-free regions and the suspension. 

In most industrial applications, the height of the settling vessel is typically on the 
order of a few metres while, owing to the small size of the particles being settled, the 
particle settling velocity and Reynolds number are low. Under these conditions, A is 
typically 106or larger while R remains of order 1-102; therefore, the PNK theory should 
be adequate for the design of both continuous and batch settling tanks for clarifying 
suspensions. 

It appears then that the primary factor which would cause significant deviations 
from the PNK theory is an instability of the interface between the suspension and the 
particle-free layer which would cause entrainment of particles into the rapidly rising 
fluid stream. If such remixing were to occur, the fluid above the suspension would 
become contaminated with particles and its quality would be correspondingly reduced. 
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Hence, if the criterion for operating a continuous settler requires a pure fluid overflow, 
a large reservoir above the suspension would have to be maintained, to allow these 
resuspended particles to resettle, and the operating efficiency of the settling vessel 
would diminish appreciably. The expressions derived in this paper for the flow field 
in the vicinity of this interface are therefore of value because they could serve, in 
principle, as the starting point for a stability analysis that would delineate the 
conditions under which inclined settling devices could be operated continuously. 

This work ‘wa8 supported in part by contract EPRI R P  314-1 with the Electric 
Power Research Institute in Palo Alto, California. 
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